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THE EFFECT OF MERIDIONAL ELECTRIC VORTEX FLOW 
ON THE AZIMUTHAL ROTATION OF A FLUID-l- 
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New exact solutions of the Navier-Stokes equations are obtained for spiral axisymmetric flow of a 

conducting fluid in bounded and unbounded regions. Attention is devoted to the influence of the poloidal 

component of the velocity field, generated by the meridional electric vortex flow, on the toroidal 

component due to the rotating boundaries of the region. A two-parameter family of self-similar solutions 

obtained by numerical integration of a system of non-linear ordinary differential equations is investigated. 

It is shown, considering twisted flow around a cylinder in an unbounded region and differential rotation 

between coaxial cylinders, that boundary layer regimes of meridional flow induce a boundary layer 

structure in the azimuthal rotation of the fluid. 

SPIRAL vortex structures in fluids are of interest in connection with phenomena observed when 
magnetic fields are excited by moving conducting media (MHD-dynamos), in the formation of 
large-scale atmospheric eddies, the phenomenon of reverse energy cascade in turbulence, etc. In 
magnetohydrodynamics, three-dimensional vortex flows and magnetic fields are conveniently split 
(depending on the phenomenon under consideration) into mutually interacting toroidal and 
poloidal components [l]. Electric vortex (EV) flows, which are created by the interaction of a 
non-uniform electric current and an intrinsic magnetic field, are of particular interest in MHD. 
When EV flows are investigated in axially symmetric situations, one can find self-similar solutions of 
the MHD equations. In that case, however, only poloidal flows are possible. Toroidal flows, set up 
in the absence of external magnetic fields by azimuthal currents only, are not observed, since in an 
axially symmetric situation the cp-component of the electric field may arise neither from the action of 
external sources nor by induction from the motion of the fluid [2]. To organize a spiral structure, the 
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azimuthal rotation of the fluid must have some other origin, such as rotating boundaries of the fluid 
region. 

The aim of this paper is to investigate the effect of steady meridional EV flow on the twisted flow 
of an incompressible conducting Auid, over a wide range of Reynolds numbers. 

1. STATEMENT OF THE PROBLEM 

In an axisymmetric situation, the solenoidal property of the velocity field and magnetic field 
enables them to be described in cylindrical coordinates by three functions: +1 = Jr1 (r, z)-the 
Stokes stream function, $z = JIz(r, z)-the current and J13 = $3(r, z)-the azimuthal velocity: 

Using this representation, we can write the equations of magnetohydrodynamics in dimensionless 

(1.2) 

The scales used here are as follows: length 1, time 12/v, functions +rAi (A, = ul, A2 = I, A, = v); p 
denotes the density, v the kinematic viscosity, 0 the conductivity of the fluid and I some 
characteristic electric current in the fluid. 

Consider the steady axisymmetric flow of an electric current to an infinite dielectric cylinder of 
radius r. aligned along the z axis. We will examine two different geometries of the region occupied 
by the fluid: (1) the electric current is flowing in an unbounded conducting fluid and (2) the region of 
flow is bounded by a coaxial solid mass of the same conductivity as the fluid. 

In cylindrical coordinates, there are several ways to separate the variables in system (1.2). For the 
situations considered here we have the representation 

lIG=tf&l)* %=ff&IL 1P1=f&-i) (1.3) 

that is, the azimuthal rotation of the fluid is independent of 5. Substituting (1.3) into (1.2) we obtain 
a coupled system of non-linear ordinary differential equations for fi(~) (the prime denotes 
differentiation with respect to T): 

(1.4) 

(1.5) 

In the context of electric vortex flows, allowance should be made for the fact that in real 
conducting fluids the Batchelor number is negligibly small: lo-’ < p < 10w6. Therefore, expanding 
the azimuthal magnetic field [in our notation-the function f&q)] in powers of l3, one usually 
confines ones attention to terms of the zeroth or first order (the electrodynamic or non-inductive 
approximation) [2]. However, when investigating EV flows in an unbounded volume of conducting 



Effect of meridional electric vortex flow 335 

fluid, one must carefully stipulate the limits of applicability of the low magnetic Reynolds number 
(Re,) condition if the components of the velocity field have a positive power dependence on the 
coordinates. 

In the scheme adopted here for the flow-sheet of electric current, the current density (j, = 
-f*/fi, jz = 2<f2’) satisfies the following boundary conditions: f2 (q,) = 0, f2’( 03) = 1 (q. = ro2/1*) 
[3]. The solution of the magnetic field induction equation (1.5) in the electrodynamic approximation 
is trivial: f2 = q - q. . 

As a quantitative characteristic of the electric current, we take the total current Z. flowing through 
the section of the cylindrical surface q = 2qo bounded by the planes 5 = 2 l/no. Then Z = &/(41r) and 
S = ~,Zo2/[(47rv)*pJ. The streamlines of the electric current are hyperbolic and symmetrical about 
the plane 5 = 0. 

The three-dimensional non-uniformity of the current leads to the formation of a vertical 
component of the Lorentz force [the last term in Eq. (1.4)], thus creating a flow in the fluid. The 
parameter S characterizes the rate of the induced EV flow and is an analogue of the Reynolds 
number. The meridional motion of the fluid is independent of the direction of the electric field, since 
S--Z,*. As we shall show below, although the vorticity distribution of the electromagnetic force 
remains fixed in both cases (both for flow outside the cylinder in an unbounded fluid and for flow 
between coaxial cylinders), the poloidal circulation of the fluid and its interaction with the azimuthal 
rotation are in opposite directions. 

2. TWISTED FLOW NEAR THE CRITICAL CIRCLE 

Suppose that a dielectric cylinder of radius r. = 21 is rotating at angular velocit CI = v/(41*) in an 
f 14 must satisfy the unbounded conducting fluid. The dimensionless azimuthal velocity v,+, = s 

boundary condition 

f,=l at n-no=4 (2.1) 

Physical considerations imply that the following boundary conditions are possible at infinity: 

(a) fJ=O, (b) fS=lr (c) f,‘=const (2.2) 

The first condition means that there is no rotational motion of the fluid at an infinite distance from 
the cylinder, the second corresponds to differential rotation of the fluid, and the third to rigid 
rotation at fi = const. 

If the cylinder surface is solid and impermeable, the no-slip condition must hold there: 

f,=f,‘=O at q=q, (2.3) 

If S = 0 the solution of the steady-state equation (1.4) will describe irrotational flow near the 
critical circle 5 = 0, no = 4 (the circle Tat which the pressure of the fluid is a maximum) [4]: 

j,=-6+n+2 exp(2+2) (2.4) 

The fluid approaches the cylinder radially from infinity, flowing up and down its surface. An 
analytical solution of Eq. (1.4) exists only at q. = 4, owing to the choice of the cylinder radius as 
r. = 21. 

If S # 0, analysis of the electromagnetic forces shows that, beginning from some n.+ % no, the curl 
of the driving force takes a constant value S/4, so that the problem has an exterior solution [3]: 

which is the asymptotic limit of the solution of problem (1.4), (2.3): 
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FIG. 1 

The one-parameter family of solutions of systems (1.4), (1.5), (2.1~(2.3) and (2.5) has been investigated by 
the fifth-order Kutta-Merson method. The missing boundary conditions at Q = Q, which appear when the 
boundary-value problem is reduced to a Cauchy’problem, are determined by Hooke-Jeeves optimization. The 
solution was considered to be adequate if it agreed with the asymptotic condition (2.6) at q+n,, to within 
0.01%. The numerical procedure was tested against the analytical solution (2.4). 

Figure I shows the results of numerical integration at S = 0, 1, 10, 100 (curves 1-4, respectively). The radial 
profiles of the axial component fr’ = v1(2<) (the dashed curves) and radial component fi = v,<n (the solid 
curves) of the poloidal flow are shown in Fig. l(a). Unlike the irrotational flow to the cylinder at S = 0, the 
velocity in EV flow has non-zero vorticity not only near the critical circle but even at infinity. Indeed, the 
viscous stress tensor component Q’ = 45VQP(q) = 3&SXi is constant at infinity for fixed 5. Thus, 
self-similar solutions of the non-linear equations are characterized by the presence of a viscous core of the ilow. 
In that case the region of flow near the critical circle in which the vorticity of the velocity, due to both viscous 
and electromagnetic forces, is appreciably different from its asymptotic value may be treated as a “boundary 
layer”, 

In steady flow, the equation forA [see (1.5)] may be integrated twice taking into account condition (2.1): 

(2.7) 

It can be shown that this solution cannot meet the third condition of (2.2) (rigid rotation of the bulk of the 
fluid outside the cylinder). When meridional EV flow is present, only differential rotation of the fluid is 
possible, fi = a(q). 

The solution of Eq. (1.5) forf? satisfying the second condition of (2.2) is trivial: A = 1, which is independent 
of the meridional circulation: the fluid rotates at constant angular velocity 0 = l/n. As for the first boundary 
condition in (2.2), the functionf3($! for various values of S is shown in Fig. l(b). It is obvious that as the rate of 
EV flow increases the azimuthal rotation is localized near the surface of the cylinder and a bounda~-layer 
structure is formed. 

3. DIFFERENTIAL ROTATION BETWEEN COAXIAL CYLINDERS 

We will now consider the effect of meridional EV flow on the azimuthal motion of a fhrid between 
two infinite coaxial cylinders rotating about their axes at angular velocities a1 and fLz. Let Z?, = 1 be 
the radius of the inner dielectric cylinder, R2 that of the outer, conducting cylinder, or, in new 
variables, q1 = 1 and q2 = 1 + 6, where 43 is the distance between the cylinders. We introduce 
dimensionless angular velocities oi = ti(ti12/v, i = 1,2. At the cylinder surfaces we require the no-slip 
conditions to hold: 
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When there is no electric vortex flow (S = 0) the last equation of (1.5) describes classical Couette 
flow between rotating cylinders [5]. Note that if the angular velocity ratio is 02/w1 = T)~/Q, then 
fs = const and the azimuthal rotation is independent of EV flow. 

The magnitude of the EV flow parameter S for flow in an unbounded region was not of decisive 
value, since for any S, however small, the Reynolds number Re = v,,,(~$Z/v = q-6 [see (2.91 
may become as large as desired with increasing distance from the cylinder; in the boundary-value 
problem (3.1), however, the magnitude of the eigenvalue S determines the regime of EV flow. 

At small S (creeping flow), the linear solution of problem (1.4), (3.1) is proportional to the EV 
flow parameter: 

it (q) =S(arq3+at$+a3q+a,q In q-q* In q- 4 In’ q/2+a,) (3.2) 

ac=12(2(1-q,)‘+(i-q,‘)ln q,j. a,-l/i2 

zc2=- (3(1-q,)*(r),-3)+2(i-q,) (qr2+7qc+l)ln q,+ 

+6(2q,‘+q,+1)~~‘q,l/cc, 

a,=I(l-q~)2(~12-8~~-~1)+(~-~0 (4qt2+25q,+1)1n q,+ 

+6(5q,‘+2q,+i)ln* qlJ/ao 

a,=~(~-~,)z(ll+i4~,-~,2)+12(1-~,2)ln q,+ 

+6(1-q,‘)In’ qtJ/ae 

as=- I (i-rl,)*(tl~‘-li~),)+2r11(1-11,) (rlr+6)ln rl,+ 

+6q,(3~)~+l)ln* qJ/ao 

According to (3.2)) (1.1)) EV flow between cylinders takes the form of bitoroidal flow which is 
symmetrical with respect to the plane < = 0; in the upper vortex the fluid circulates in the 
counterclockwise sense. 

As S increases, the non-linearity of Eq. (1.4) comes to the fore. Electromagnetic forces are 
balanced by viscous forces owing to the large gradients near the solid boundaries; in the inviscid 
core of the flow they are balanced by the inertial terms. The essentially non-linear nature of EV flow 
is indicated by the proportionality to fi. 

Numerical analysis of the problem described by Eq. (1.4), the second equation of (1.5) and conditions (3.1) 
was carried out, with the geometrical parameter fixed at 6 = 1, giving S the successive values 2 x lo’, 105, 106, 
5 x 10’ (curves l-4 in Fig. 2). The solid curves in Fig. 2(a) are profiles of the radial velocity component 
(F = ~,/a) while the dashed curves are those of the axial component (F’ = v,l(25*). We see that as S 
increases the vortex centres are displaced toward the surface of the outer cylinder. The cp-component of the 
velocity vorticity (I = -45fr”q) is shown as a function of q in Fig. 2(b). In the Stokes regime EV flow takes 
place symmetrically between the cylinders (curve 1). As S increases the friction increases more slowly at the 
surface of the dielectric cylinder than at that of the conducting one. When S> 10h (curve 4) the EV flow is 
deformed in the direction of the outer cylinder, with the formation of a pronounced boundary layer. 

At w, = 0, 02 = 1 (only the outer cylinder is rotating), the classical formula of Couette Bow [S] gives 
fs = (1 +S)(T - 1)/S (Fig. 3a, curve 1, corresponding to S = 0). At other S values: lo”, 6 x 10h and 5 x 10s 
(curves 2-4, respectively), the radial function of the azimuthal velocity fs(q) changes appreciably, indicating 
that the rotation of the fluid is localized near the surface of the rotating cylinder. 

At w1 = 0.2,~~ = -0.8, the rotation inversion point (v~=O) is displaced as S increases to the outer boundary 
(Fig. 3b). 

Let us investigate the effect of the essentially non-linear EV flow regime on rotating motion in a cylinder 
layer in the general case 02 = cm1 . Figure 4 shows the radial angular velocity function of the fluid, o = O(V), at 
S=6x106,wi=land (Y is equal respectively to -10, -1.5,0,0.5, 1, 5, 50 (curves l-7). The region of twisted 
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flow is divided into a region qll <q s?,(S), in which the fluid rotates at an angular velocity WI/~ (“rotation 
core”) and a region q*(S) <q SQ in which w(q) depends on (Y. 
Thus, in both cases considered (flow around a cylinder in an unbounded region and flow between 
coaxial cylinders), the well-developed meridional boundary-layer flow induces a boundary layer 
structure in the azimuthal rotation of the fluid. 

Another characteristic feature of axisymmetric EV flows is that, in a given field of body forces, 
one can alter the flow structure-the direction of meridional circulation and the position of the 
boundary layers. This may be used to intensify the differential rotation of a conducting fluid. 
Regulation of the flow of liquefied metals in an annular gap is used in lubrication, centrifugal 
founding, etc. The boundary layer structure of rotational motion has found application in MHD 
separation for ore dressing, the purification of liquid metals, and the extraction of metals and oxides 
from slags [6]. 
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